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ABSTRACT

Multiple sclerosis (MS) is a demyelinating immune-mediated disease of the central nervous system (CNS). It is the most frequent 
neurological disease in young adults and aff ects over 2 million people worldwide. Current treatments reduce the relapse rate and 
the formation of infl ammatory lesions in the CNS, but with only temporary and limited success. Despite the presence of endogenous 
oligodendroglial progenitors (OPCs) and of spontaneous remyelination, at least in early MS its levels and its qualities are apparently 
insuffi  cient for a sustained endogenous functional repair. Therefore, novel MS therapies should consider not only immunemodulatory 
but also myelin repair activities. Mesenchymal stem cells (MSCs) represent an attractive alternative to develop a cell-based therapy for 
MS. MSCs display stromal features and exert bystander immunemodulatory and neuroprotective activities. Importantly, MSCs induce 
oligodendrocyte fate decision and diff erentiation/maturation of adult neural progenitors, suggesting the existence of MSC-derived 
remyelination activity. Moreover, transplanted MSCs promote functional recovery and myelin repair in diff erent MS animal models. Here, 
we summarize the current knowledge on endogenous mechanisms for remyelination and proposed autologous MSC therapy as a promising 
strategy for MS treatment.
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1. MULTIPLE SCLEROSIS: ETIOLOGY AND CLASSIFICATION

Oligodendrocytes are the myelin-producing cells of the central 
nervous system (CNS) and are responsible for electrical 
insulation and protection of axons. Electrical insulation 
is required for a salutatory conduction along the axons. 
Demyelination in the CNS as a consequence of a number of 
diff erent pathologies leads to a variety of dysfunctions that 
cause a wide range of neurological symptoms resulting in 
physical and cognitive disabilities.

Multiple Sclerosis (MS) represents the most frequent 
demyelinating disease, and in young adults it is the major 
cause of neurological disabilities. There are approximately 
2.5 million MS patients worldwide. MS primarily aff ects the 
Caucasian population from the Northern Hemisphere with a 
higher frequency in central and northern compared to southern 
Europe (Ebers and Sadovnick, 1993; Noseworthy et al., 2000). 
MS has a gender bias, since it appears more frequently in 
females than in males (Alonso and Hernan, 2008; Orton et al., 
2006; Ramagopalan et al., 2010). The reason for this is unclear, 
but the higher MS incidence in females might be more related 
to specifi c female physiology (i.e. hormones) rather than to 
an MS-associated X-linked gene (Whitacre, 2001). MS patients 
suffer several neurological symptoms such as weakness, 
changes in sensation, spasticity, visual problems, fatigue and 
depression, acute/chronic pain, and paralysis.

Although the MS etiology is still under debate, it certainly 
involves an autoimmune response in which T and B cells react 
against CNS myelin. This causes infl ammatory lesions in the 
CNS and culminates in the loss of oligodendroglia and in 
axonal degeneration (Kornek and Lassmann, 2003; Lassmann, 

1998; Lassmann, 1999; Lassmann et al., 2007; Noseworthy 
et al., 2000; Siff rin et al.; Sospedra and Martin, 2005). The 
current concepts on MS etiology include i) dysregulation of the 
immune system and induction of an autoimmune response, 
ii) viral infections as the initial trigger, and iii) genetic and 
environmental risk factors (Ebers and Sadovnick, 1994; 
Noseworthy et al., 2000; Rodriguez, 2007; Sadovnick and Ebers, 
1993; Sadovnick et al., 1996). For example, specifi c alleles 
of genes related to the immune response such as antigen-
presentation (HLA, specifically DR genes), cell-adhesion 
(CD58), and cytokine receptors (IL7RA, IL2RA) have been 
described as genetic risk factors for MS (De Jager et al., 2009; 
Fugger et al., 2009; Svejgaard, 2008). In addition, smoking, 
lack of sunlight and vitamin D defi ciency have been identifi ed 
as environmental MS predisposing factors (Ascherio et al.; 
Hedstrom et al., 2009).

Based on the mode of progression, MS is classifi ed in three 
major clinical forms: primary progressive (PP), secondary 
progressive (SP), and relapsing-remitting (RR) MS (Lublin and 
Reingold, 1996). The RR is the most frequent type, which is 
characterized by acute episodes of neurological dysfunction 
named relapses, followed by variable recovery and periods 
of clinical stability (remission). While RR-MS and SP-MS are 
most likely distinct phases of the same disease, PP-MS may 
imply completely diff erent processes. More than 50% of the 
RR-MS patients eventually develop progressive neurological 
symptoms and sustained deterioration without a clear 
remission period. This form is called the SP variety of MS 
(Lublin and Reingold, 1996). Finally, between 10 and 15% of 
MS patients suff er form the PP type, which is characterized by 
the absence of remission periods (Lublin and Reingold, 1996). 
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Patients with PP-MS worsen at similar speeds, while those 
with the RR-MS may have very diff erent clinical courses.

2. REMYELINATION: THE PHYSIOLOGICAL RESPONSE TO 
MYELIN DAMAGE

The CNS is generally referred to as an organ with a limited 
capacity for regeneration. As a consequence, traumatic injuries, 
demyelinating or degenerative diseases generally result in 
irreversible defi cits. However, endogenous repair activities 
exist and can be activated in order to regain structure and 
function. The fi rst evocative suggestion that remyelination 
exists in the CNS was made by Joseph Babinski at the end 
of the nineteenth century. In his studies on MS pathology he 
illustrated demyelinated axons that displayed short areas with 
thin myelin sheaths, which he interpreted as remyelination. 
Today, it is evident that myelin sheaths are re-established along 
demyelinated axons, restoring structure and function (Franklin 
and Ffrench-Constant, 2008; Lassmann et al., 1997; Smith et al., 
1979; Woodruff  and Franklin, 1999).

Research on animal models has provided a substantial 
contribution to our knowledge of  the cel lular and 
molecular mechanisms of remyelination. Animal models 
to study remyelination use mainly drugs that specifically 
induce demyelination. Cuprizone (bis-cyclohexanone-
oxaldihydrazone) is one of the toxins widely used in preclinical 
research. It is easily administrated orally through food pellets, 
and once in the organism it chelates copper, resulting in a 
systemic copper defi ciency. For still unknown reasons, the 
cuprizone-induced copper deficiency affects in particular 
oligodendrocytes and induces a synchronous and rapid 
demyelination in various brain regions such as the corpus 
callosum (CC), superior cerebellar peduncles, cortex, olfactory 
bulb, hippocampus, optic chiasm, brainstem, etc (Blakemore, 
1972; Blakemore, 1973; Kesterson and Carlton, 1971; Komoly 
et al., 1987; Ludwin, 1978; Matsushima and Morell, 2001; 
Silvestroff  et al.; Skripuletz et al., 2008). Remyelination is 
quite evident one to two weeks after cuprizone removal and 
largely complete after four weeks (Matsushima and Morell, 
2001; Silvestroff  et al.). Other toxic agents that are used to 
investigate de- and remyelination are lysophosphatidylcholine 
(lysolecithin) and ethidium bromide (EtBr). These are, in 
contrast to the systemic application of cuprizone, injected 
locally into the desired site of demyelination. Lysolecithin is 
a membrane-dissolving agent which acts mainly on myelin-
producing cells, while EtBr is a DNA intercalating agent 
that damages not only oligodendrocytes but also astrocytes 
(Woodruff  and Franklin, 1999). The substances are generally 
injected into white matter CNS regions such as caudal 
cerebellar peduncle, spinal cord or CC, provoking a rapid local 
demyelination (Jablonska et al., 2010; Woodruff  and Franklin, 
1999; Zawadzka et al., 2010).

Myelin repair represents a crucial therapeutic goal for the 
treatment of MS. Therefore it is critical to understand how this 
reparative phenomenon occurs in adult CNS. Which are the 
cells responsible for remyelination? What is the molecular and 
cellular mechanism that underlies this process? One would 
expect that adult remyelination might recapitulate the full 
program of developmental myelination. However, for still 
unknown reasons, remyelinated sheaths end up thinner than 
the myelin sheaths produced during development (Blakemore, 
1974; Ludwin and Maitland, 1984). Two hypotheses which 

might explain this observation are currently under discussion: 
i) since myelination depends on the coordinated interaction 
between oligodendrocytes and axons, the thin myelin 
sheath formation might be a consequence of differences 
in the axonal properties (Franklin and Hinks, 1999); ii) 
alternatively, the intrinsic remyelination capability of adult 
oligodendroglial progenitors might be weaker compared to 
those of developmental progenitors. The diff erent proliferation 
rates and migratory capacities of developmental versus adult 
progenitors might contribute to this possibility (Wolswijk 
and Noble, 1989). Although neither of these hypotheses 
has yet been confi rmed, it is more likely that myelination 
and remyelination display relatively diff erent cellular and 
molecular mechanisms.

At least two diff erent cellular sources for newly generated 
myelinating oligodendrocytes have been identif ied: 
i) oligodendroglial precursor/progenitor cells and ii) 
subventricular zone-derived neural stem/progenitor cells. In 
the early 1980s, Martin Raff  and co-workers identifi ed for the 
fi rst time oligodendroglial precursor/progenitor cells (OPCs). 
Optic nerve-derived OPCs are proliferating cells capable of 
diff erentiating into oligodendrocytes and type 2 astrocytes (also 
termed O-2A progenitors) (Raff  et al., 1983; Raff  et al., 1984). 
OPCs are widely spread throughout the CNS in the white and 
grey matter, representing 5 to 8% of total glial cells (Levine et 
al., 2001). OPCs can be identifi ed through the expression of 
specifi c markers such as ganglioside antigens recognized by 
the A2B5 antibody (Wolswijk and Noble, 1989), chondroitin 
sulfate NG2 (Dawson et al., 2000; Keirstead et al., 1998), 
platelet-derived growth factor receptor-α (PDGFRα) (Redwine 
and Armstrong, 1998) and the transcription factor olig1 
(Arnett et al., 2004). There is substantial evidence that OPCs 
are the major source of new myelinating oligodendrocytes 
in adult CNS (Franklin and Kotter, 2008). First, lacZ-
encoding retroviral tracing studies demonstrated focal 
lysolecithin-induced demyelination in the white matter 
labeled proliferating cells that give rise to remyelinating 
oligodendrocytes (Gensert and Goldman, 1997). Second, 
transplanting adult OPCs into a myelin-defi cient (md) rat was 
shown to remyelinate nude axons (Zhang et al., 1999). Third, 
after focal demyelination OPC repopulation was observed 
before new mature oligodendrocytes appeared (Levine and 
Reynolds, 1999; Sim et al., 2002; Watanabe et al., 2002). Finally, 
the existence of cells with a transitional expression of markers 
for OPCs and mature oligodendrocytes argues for OPCs being 
the source of newly generated myelin in the adult CNS (Fancy 
et al., 2004; Zawadzka et al., 2010). Although Schwann cells 
have been thought to remyelinate solely axons of the peripheral 
nervous system, they can also be a source for CNS myelin 
(Dusart et al., 1992; Felts et al., 2005). Conversely, a recent 
report using a genetic fate mapping strategy demonstrated that 
CNS-resident PDGFRα/NG2-expressing cells (OPCs) give rise 
to remyelinating oligodendrocytes and to Schwann cells after 
chemical-induced demyelination (Zawadzka et al., 2010).

The process of OPC-derived remyelination may be divided 
into three steps: OPC activation, recruitment and diff erentiation 
(Bruce et al.; Franklin and Kotter, 2008). Each individual step 
is tightly regulated by extrinsic and intrinsic factors that act 
as either remyelination inhibitors or activators (Rivera et al., 
2010). Upon demyelination, OPCs become mitotically active 
and induce the expression of oligodendrogenic genes such as 
Olig2 and Nkx2.2 (Fancy et al., 2004; Levine and Reynolds, 
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1999; Reynolds et al., 2002). The proliferation stimulus is 
mediated via astrocytes and microglia, which are activated 
upon demyelination to release mitogens that act on OPCs 
(Olah et al., 2012; Redwine and Armstrong, 1998; Schonrock et 
al., 1998; Wilson et al., 2006). OPC recruitment is intrinsically 
modulated by the cell cycle regulatory protein p27Kip1 
(Crockett et al., 2005) and promoted by platelet-derived growth 
factor (PDGF) and fi broblast growth factor (FGF) (Murtie et 
al., 2005; Woodruff  et al., 2004; Zhou et al., 2006). Also, the 
coordinated interaction between cell surface molecules and 
extracellular matrix (ECM) is crucial for OPC recruitment 
(Larsen et al., 2003). Oligodendroglial differentiation and 
maturation is further subdivided into the following steps: fi rst, 
OPCs establish contact with bare axons, then OPCs activate 
myelin genes and generate the myelin membrane that fi nally 
wraps compactly around the axons forming the myelin sheath 
(Franklin and Kotter, 2008).

Apparently, OPCs are not the only immature cells within 
the adult CNS which can generate new oligodendrocytes. The 
original fi ndings of newly generated neurons in the adult brain 
by Altman and Das (Altman, 1969; Altman and Das, 1965; 
Altman and Das, 1964) evoked the hypothesis of neural stem 
cells that are the source of new neurons in the adult brain. 
Neural stem/progenitor cells (NPCs) reside in a particular 
cellular and extracellular microenvironment called the stem cell 
niche, in the subgranular zone (SGZ) in the dentate gyrus of the 
hippocampus and in the subventricular zone (SVZ) of the wall 
of the lateral ventricles (Alvarez-Buylla and Garcia-Verdugo, 
2002; Doetsch and Scharff , 2001; Gage, 2000). In the SVZ NPCs 
divide and diff erentiate into neuronal precursors, migrating 
along the rostral migratory stream (RMS) to the olfactory bulb 
(OB), where they functionally integrate and diff erentiate into 
granule and periglomerular neurons (Carleton et al., 2003; 
Doetsch and Scharff, 2001; Lois et al., 1996). SVZ-derived 
NPCs generate not only neurons but also oligodendrocytes. 
Retroviral tracing has demonstrated that NPCs give rise to a 
small subpopulation of Olig2-expressing transit-amplifying 
precursor cells that in turn generate PSA-NCAM/PDGFRα-
positive cells (Menn et al., 2006). These cells migrate towards 
the corpus callosum (CC), the striatum and to the fi mbria 
fornix, where they differentiate into oligodendrocytes 
(Menn et al., 2006). SVZ-derived NPCs also respond to 
demyelinating lesions that enhance basal oligodendrogenesis. 
For example, the number of SVZ-derived newly generated 
oligodendrocytes was signifi cantly increased after lysolecithin-
induced demyelination (Menn et al., 2006). Moreover, SVZ-
derived EGF-responsive NPCs migrate to the lesion area and 
diff erentiate into remyelinating oligodendrocytes (Gonzalez-
Perez et al., 2009). Upon lysolecithin-induced demyelination 
of the CC, SVZ-derived PSA-NCAM-expressing progenitors in 
the RMS increased their proliferation rate, migrated towards 
the injured CC and diff erentiated into oligodendrocytes and 
astrocytes (Nait-Oumesmar et al., 1999). The shift towards 
the oligodendroglial fate apparently involves the BMP 
antagonist chordin, since chordin is upregulated in the SVZ 
after demyelination, and elevated levels of chordin inhibit 
the generation of GAD65-positive and DCX-positive cells and 
redirect the newly generated cells towards the CC, where they 
diff erentiate into oligodendrocytes (Jablonska et al., 2010). SVZ-
derived progenitors also respond to chronic demyelination 
as it is presented in a MS animal model. Here, SVZ-derived 
remyelinating oligodendrocytes were found in CC, fi mbria 

and striatum. In white matter areas remote from SVZ such as 
the cerebellum, however, no SVZ-derived newly generated 
oligodendrocytes were found (Picard-Riera et al., 2002), 
suggesting that unlike OPCs, SVZ-derived oligodendrogenesis 
is restricted to the SVZ near regions. In conclusion, the SVZ 
stem cell niche constitutes a source for new oligodendrocytes. 
A number of crucial questions are yet to be answered: i) how 
similar are SVZ-derived remyelinating cells and OPCs? ii) what 
are the molecular mechanisms of the neuronal-oligodendroglial 
fate switch?

Remyelination is a reparative response to myelin damage; 
however during MS this phenomenon largely fails. Although 
some MS patients generate autoantibodies against OPC 
epitopes such as NG2 and might destroy OPCs (Niehaus 
et al., 2000), the majority of data supports a failure of OPC 
differentiation and maturation in MS. OPCs are typically 
found in demyelinated areas, but they fail to diff erentiate 
and to remyelinate (Chang et al., 2002; Kuhlmann et al., 2008; 
Reynolds et al., 2002; Wolswijk, 1998). Also, the proliferation of 
glial progenitors in the SVZ and in demyelinated lesions in MS 
brains is 2 to 3-fold higher than in controls (Nait-Oumesmar et 
al., 2007) indicating that the number of OPCs is not a limiting 
factor for remyelination in MS. In the acute situation, the large 
number of immune cells and infl ammatory cytokines facilitate 
and promote remyelination. However, chronic MS brains show 
microenvironmental changes that limit remyelination. These 
changes include a lower level of inflammatory responses, 
which are required for successful remyelination (Franklin, 
2002). Therefore, an impaired OPC differentiation ability 
and variations in the CNS inflammatory status restrict 
remyelination capability during MS.

3. THE OLIGODENDROGENIC PROGRAM: MOLECULAR MO-
DULATION OF OLIGODENDROGENESIS AND MYELIN REPAIR

The generation of new myelinating oligodendrocytes 
(oligodendrogenesis) is a process composed of several 
hierarchically structured events (de Castro and Bribian, 2005; 
Franklin and Kotter, 2008; Liu and Rao, 2004; Miller, 2002). 
During oligodendrogenesis, each step is tightly regulated by 
context-dependent stimulatory as well as inhibitory signals 
that are orchestrated in an oligodendrogenic program (Rivera 
et al., 2010).

Several molecular signals involved in the activation of 
oligodendrogenesis such as PDGF and thyroid hormone (TH) 
have been identifi ed. The role of PDGF in oligodendrocyte 
development is well established. PDGF stimulates the 
proliferation of OPCs, and in the absence of PDGF, OPCs exit 
the cell cycle and diff erentiate pre-maturely (Barres et al., 1994; 
Raff  et al., 1988). PDGF might also play an important role in the 
process of myelination. Excess PDGF increases the number of 
OPCs within demyelinating lesions (Woodruff  et al., 2004), and 
accelerates remyelination (Allamargot et al., 2001). However, 
PDGF infusion also induces SVZ type B cell proliferation and 
tumor initiation (Jackson et al., 2006). In summary, although 
PDGF is an attractive candidate to enhance remyelination 
in MS, it might have detrimental side eff ects such as tumor 
formation. Another molecule that stimulates endogenous 
myelin repair is TH. This hormone induces proliferation of 
OPCs, promotes their differentiation and finally enhances 
morphological and functional maturation of post-mitotic 
oligodendrocytes (Ahlgren et al., 1997; Billon et al., 2001; 
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Rodríguez-Peña, 1999). Indeed, inhibition of this hormone 
leads to a decrease in oligodendrocyte numbers (Ahlgren et 
al., 1997; Koper et al., 1986). Consistent with these fi ndings, 
TH also aff ects myelination and remyelination. Thus it has 
been shown in vivo in diff erent demyelination and MS animal 
models that TH enhances and accelerates remyelination by 
promoting neural progenitor diff erentiation into OPCs and 
oligodendrocytes (Calza et al., 2002; Calzà et al., 2005; Franco 
et al., 2008). In conclusion, TH induces OPC diff erentiation, 
maturation and enhances remyelination.

In addition to oligodendrogenesis-promoting factors, a 
number of molecules and transduction pathways that inhibit 
oligodendrogenesis and remyelination have been identifi ed. 
For instance, bone morphogenetic proteins (BMPs) are rapidly 
up-regulated after CNS injuries and are involved in astrogliosis 
and glial scar formation (Fuller et al., 2007; Setoguchi et al., 
2001). Upon BMP stimulation, OPCs upregulate Id2 and Id4, 
which sequester the pro-oligodendrogenic Olig factors and 
prevent them from translocating into the nucleus and thereby 
block their activity (Samanta and Kessler, 2004). Besides 
BMPs, Notch signaling has been implicated in inhibition of 
oligodendrogenesis. The Notch downstream targets Hes1 and 
Hes5 (Jarriault et al., 1998; Wang et al., 1998) inhibits neuronal 
and oligodendroglial diff erentiation and promotes astrocyte 
fate decision in neural progenitor cells (Artavanis-Tsakonas et 
al., 1999; Kageyama and Ohtsuka, 1999; Kageyama et al., 2005; 
Ohtsuka et al., 2001; Tanigaki et al., 2001; Wang et al., 1998; 
Wu et al., 2003). Notch also inhibits the expression of genes 
relevant for oligodendroglial maturation and myelination 
(Givogri et al., 2002; Jessen and Mirsky, 2008; Woodhoo et al., 
2009). Therefore, Notch signaling inhibits oligodendrocyte 
fate decision as well as oligodendroglial differentiation, 
maturation and myelination. A further interesting target 
for remyelinating therapies is the cyclin-dependent kinase 
inhibitor p57kip2. In addition to cell cycle control, p57kip2 is 
involved in oligodendrogenesis. It has been demonstrated that 
in Schwann cells suppression of endogenous p57kip2 levels 
uncouples cellular diff erentiation from axonal contact (Heinen 
et al., 2008). A similar role for p57kip2 has now been revealed 
during the oligodendroglial diff erentiation process. Although 
oligodendrocytes –in contrast to Schwann cells– showed 
spontaneous differentiation in culture, long-term p57kip2 
suppression accelerated morphological maturation as well as 
myelin protein expression. Moreover, p57kip2 is dynamically 
regulated during MS and inhibits oligodendroglial maturation 
(Kremer et al., 2009). Furthermore, p57kip2 regulates glial 
fate choice in adult NPCs, since after p57kip2 suppression a 
signifi cant increase in oligodendrogenesis at the expense of 
astrogenesis has been noticed (Jadasz et al., 2012). Therefore, 
p57kip2 blocks oligodendrocyte fate decision, diff erentiation 
and maturation. Finally, Wnt signaling was shown to 
interfere with oligodendrogenesis during development as 
well as during adult CNS remyelination (Fancy et al., 2009; 
Shimizu et al., 2005). It has been shown that stabilization of 
Axin2, a negative regulator of Wnt signaling, accelerated 
oligodendrocyte differentiation and remyelination (Fancy 
et al., 2011). In summary, Wnt is an inhibitory signal for 
oligodendrogenesis, aff ecting diff erentiation and maturation as 
well as remyelination.

There are several other molecular key regulators of 
oligodendrogenesis and remyelination, however, a review of all 
factors would be beyond the scope of this review. Nevertheless, 

therapeutic strategies aiming to enhance pro-oligodendrogenic 
activities and/or to suppress anti-oligodendrogenic signals 
might represent an attractive possibility for the treatment of 
demyelinating diseases such as MS.

4. INNOVATIVE THERAPIES FOR REMYELINATION AND MS 
TREATMENT

Current MS treatments use disease-modifying drugs, which 
have proven to have only limited effi  cacy, primarily in the 
RR type of MS. These include the immune-suppressive 
cytokines interferon beta-1a and interferon beta-1b, the 
immune-modulating drug glatiramer acetate and the immune-
suppressant mitoxantrone. A novel and frequently used drug 
is the monoclonal anti alpha4-integrin antibody natalizumab, 
which reduces the ability of immune cells to cross the blood-
brain-barrier (BBB). All these MS treatments have major side 
eff ects, have only minor eff ects in the progressive forms of MS, 
and most likely have no repair-promoting activity.

Preclinical development of novel MS therapies widely uses 
the experimental autoimmune encephalomyelitis (EAE) animal 
model (Lassmann, 2007a). This was fi rst described in monkeys 
(Rivers et al., 1933), but now mainly rodent species are used. 
EAE is induced by active immunization with myelin-derived 
antigens such as myelin oligodendrocyte protein (MOG), myelin 
basic protein (MBP), myelin proteolipid protein (PLP), or with 
immunodominant peptides from these antigens such as MOG35-

55. Alternatively, EAE can also be evoked through the adoptive 
transfer of myelin-reactive T lymphocytes (Kabat et al., 1951; 
Kuchroo et al., 2002). A typical susceptible rodent will debut with 
the fi rst clinical symptoms around 2 weeks after immunization 
and develop a RR EAE. Besides the clinical symptoms, the 
EAE models also resemble most, if not all the pathological 
characteristics of MS such as demyelination, inflammation 
and neurodegeneration, which makes this model particularly 
attractive for the development of new MS therapies.

A molecular therapy might not be suffi  cient to target all 
diff erent aspects of MS pathogenesis. MS is a multi-factorial 
disease with infl ammatory, myelin- and axon-degenerative 
components. Moreover, this disease is progressive, initiating 
with acute episodes characterized by T and B cell infi ltration 
and subsequent infl ammatory reactions that ultimately lead 
to a chronic situation encompassing an anti-regenerative 
microenvironment (Franklin, 2002; Lassmann, 2007b). 
Therefore the diseased microenvironment as well as the 
pathogenic parameters change during the course of MS, 
thus it is unlikely that a single molecular therapy would 
be able to cover the entire range of MS pathogenesis and 
provide suffi  cient structural and functional repair. Ideally, a 
MS therapy should: i) target the autoimmune-infl ammatory 
component and exert an immunemodulatory activity, ii) target 
the neurodegenerative component and be neuroprotective, 
and iii) promote structural and functional repair mechanisms 
such as remyelination. In this respect, a cell therapy strategy 
that provides all these activities might represent an attractive 
therapy for MS treatment.

5. MESENCHYMAL STEM CELLS TRANSPLANTATION: AN AT-
TRACTIVE AND PROMISING THERAPY FOR MS TREATMENT

Adult mesenchymal stem cells (MSCs) reside in the bone 
marrow and in most connective tissues within the body (da 
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Silva Meirelles et al., 2006; Minguell et al., 2001). MSCs are 
characterized by their capability to differentiate into cells 
and tissue of the mesenchymal lineage such as bone, adipose 
tissue, cartilage, tendons, and muscle (Minguell et al., 2001). 
In bone marrow MSCs also display stromal cell properties, 
since they regulate the activity and fate of hematopoietic 
stem cells (HSCs), presumably through paracrine mechanisms 
(Minguell et al., 2001). Therefore the dual nature of MSCs 
as stem and stromal cells represents an advantage for these 
cells to “adapt” to neural microenvironments that arise from 
pathological conditions such as MS. In contrast to NPCs and 
OPCs that are embedded in the adult CNS and thus require 
invasive techniques to obtain them, MSCs are highly accessible. 
Altogether, MSCs are multipotent, stromal and accessible cells 
that might represent an attractive alternative to develop an 
autologous cell therapy for MS treatment.

During the last decades, several research groups have 
evaluated the eff ect of MSC transplantation into the diseased 
CNS. MSC transplantation promotes neuroprotection and 
regeneration in the lesioned areas of different animal 
experimental models (Dezawa et al., 2001; Gerdoni et al., 2007; 
Hofstetter et al., 2002; Lu et al., 2005; Neuhuber et al., 2005; 
Zhang et al., 2005; Zhang et al., 2004). Importantly, in the case 
of MS, several studies have demonstrated that transplanted 
MSCs reduce demyelination, increase neuroprotection, 
modulate infl ammation and enhance functional recovery in 
the EAE animal model (Bai et al., 2009; Barhum et al., 2010; 
Gerdoni et al., 2007; Gordon et al., 2008; Gordon et al., 2010; 
Kassis et al., 2008; Kemp et al., 2010; Lanza et al., 2009; Lu 
et al., 2009; Rafei et al., 2009a; Rafei et al., 2009b; Zappia 
et al., 2005; Zhang et al., 2009; Zhang et al., 2005; Zhang 
et al., 2006). A list of these studies with the most relevant 
fi ndings is summarized in Table I. It seems that systemic 

transplantation represents the best MSC administration route 
compared to others. For instance, while no negative side 
eff ects have been reported when MSCs were intravenously 
administrated into an EAE model, MSC-derived ectopic 
connective tissue has been detected within the CNS of EAE 
mice after intracerebroventricular transplantation (Grigoriadis 
et al., 2011). Clinical trials are currently ongoing with MSC 
autologous systemic transplantation into RR-, SP- and PP-MS 
patients (Freedman et al., 2010; Martino et al., 2010). Moreover, 
in a recent preliminary study in which autologous MSC 
transplantation was performed in SP-MS patients, a signifi cant 
functional, structural and physiological visual improvement 
has been described (Connick et al., 2012). Although pre-clinical 
and clinical trials suggest MSC transplantation as a promising 
therapy for MS, more studies and long-term clinical trials are 
necessary to provide fi nal conclusions.

The underlying mechanisms of the therapeutic effects 
of MSCs are still unknown, but they may involve one or 
more of the following possibilities: i) transdifferentiation 
of MSCs into functional integrated mature neurons and/
or oligodendrocytes (MSC plasticity); ii) immunoregulatory 
eff ect of transplanted MSCs on host-derived immunoreactive 
cells (immunemodulation); iii) bystander eff ects of MSCs on 
the survival of damaged neurons and/or oligodendroglia 
(neuroprotection); iv) bystander eff ects of MSCs on the fate 
and diff erentiation of endogenous NPCs or OPCs present at the 
lesion site (remyelination).

5.1 MSC neural transdiff erentiation: a fact or wishful thinking?

Several studies have considered and tested the hypothesis 
that transplanted adult MSCs might transdiff erentiate into 
mature neurons or glial cells, which would integrate into the 

TABLE I

Summary of the main fi ndings (X) in studies where functional recovery has been reported after MSC transplantation into EAE mice

MSCs Source Administration Route IM NP RM References

Human bone marrow Intravenous X X (Zhang et al., 2005)

Mouse bone marrow Intravenous X X (Gerdoni et al., 2007)

Human bone marrow Intravenous X X (Bai et al., 2009)

Human bone marrow (neurotrophic factor-producing MSCs) Intracerebroventricular X X (Barhum et al., 2010)

Human bone marrow Intraperitoneal (Gordon et al., 2008)

Human bone marrow Intravenous X (Gordon et al., 2010)

Mouse bone marrow Intravenous, Intraventricular X X X (Kassis et al., 2008)

Human (CNTF-overexpressing MSCs) Intravenous X X X (Lu et al., 2009)

Mouse bone marrow Intraperitoneal (Rafei et al., 2009a)

Mouse bone marrow Intravenous X X (Zappia et al., 2005)

Mouse bone marrow Intravenous X (Zhang et al., 2009)

Human bone marrow Intravenous X (Zhang et al., 2006)

Mouse bone marrow Intraperitoneal X (Rafei et al., 2009b)

Abbreviations: Immunemodulation (IM), Neuroprotection (NP), Remyelination (RM)
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damaged CNS and promote functional recovery. For instance, 
MSCs that were injected into the mouse lateral ventricle were 
later detected in the cerebellum, hippocampus molecular 
layer and olfactory bulb. Surprisingly, transplanted MSCs 
were found to express markers specifi c for astrocytes and 
neuronal lineage. Moreover, after MSCs were placed into a 
CNS trauma, stroke or Parkinson mouse model, transplanted 
cells were found to express mature astrocyte- or neuronal-
specifi c markers (Kopen et al., 1999; Li et al., 2001; Li et al., 
2000; Mahmood et al., 2001). Together this in vivo evidence 
supported a MSC transdiff erentiation mechanism; however, 
follow-up studies revealed the possibility of fusion events 
between transplanted stem/progenitors cells with endogenous 
differentiated cells (Álvarez-Dolado et al., 2003; Kemp 
et al., 2010; Terada et al., 2002). This observation clearly 
indicates caution when interpreting results and claiming 
conclusions. MSC transdiff erentiation has been tested under 
both in vivo and in vitro conditions. A number of studies have 
shown that the induction of neural genes in MSCs could 
be achieved through stimulation with non-physiological 
substances such as betamercaptoethanol, dimethylsulfoxide, 
hydroxyanisole and butylated hydroxytoluene, etc (Deng 

et al., 2001; Munoz-Elias et al., 2003; Padovan et al., 2003; 
Rismanchi et al., 2003; Sánchez-Ramos et al., 2000; Woodbury 
et al., 2002; Woodbury et al., 2000). The criteria to assess MSC 
neural transdifferentiation properties of these compounds 
were based on the appearance of cells exhibiting a typical 
neural-like morphology and/or the expression of distinctive 
neural-specific genes. However, it has been observed that 
these non-physiological compounds induce a disruption 
of the actin cytoskeleton and may facilitate the outcome 
of neurite-resembling processes (Neuhuber et al., 2004). 
Moreover a study by Lu and coworkers demonstrated that 
morphological changes and increases in immunolabeling for 
certain neural markers upon “neural chemical induction” of 
MSCs are likely the result of cellular toxicity, cell shrinkage, 
and changes in the cytoskeleton and do not represent a true 
neural transdifferentiation phenomenon (Lu et al., 2004). 
Consequently, caution is recommended in the interpretation 
of results assessing the MSC neural transdifferentiation 
induced by non-physiological compounds. Therefore, to 
avoid misleading effects in vitro studies should focus on 
the investigation of physiological inductors for MSC neural 
diff erentiation. In this respect, we have shown that soluble 

Figure 1. Therapeutic activities of transplanted MSCs in MS. Bone marrow-derived MSCs are accessible stromal multipotent cells 
that after transplantation display bystander therapeutic activities for MS treatment. It seems that mainly soluble factors (cytokines, growth 
factors, neurotrophins, etc) mediate the MSC-induced recovery in MS. Transplanted MSCs can home to and infi ltrate the diseased CNS 
and lymph nodes. After transplantation, MSCs can modulate the immune system and inhibit encephalitogenic T and B cell activation 
(immunemodulatory activity (♦) in green). In addition, transplanted MSCs protect neurons and oligodendrocytes from cell death 
(neuroprotection activity (♦) in yellow). Finally, transplanted MSCs induce oligodendrocyte, stimulate endogenous OPCs differentiation 
and maturation that might enhance remyelination in vivo (remyelination activity (♦) in red). Therefore, MSC transplantation represents 
an attractive alternative to develop a novel therapeutic strategy for the treatment of MS. Abbreviations: Oligodendrocyte Progenitor Cells 
(OPCs), Mesenchymal Stem Cells (MSCs).
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factors derived from adult hippocampus induce a neuronal-
like phenotype in MSCs (Rivera et al., 2006a). However, 
diff erentiated MSCs did not display mature neuronal features. 
In conclusion, although some in vivo and in vitro studies 
indicate that MSCs might transdiff erentiate into cells from 
the neural lineage, there is no convincing evidence and more 
studies are required to claim this conclusion.

Considering that MS is a CNS disease that mainly aff ects 
oligodendroglia, there is no substantial evidence showing that 
MSCs can transdiff erentiate in vivo into mature remyelinating 
oligodendrocytes. In two diff erent studies mouse and human-
derived MSCs were systemically administrated into EAE mice. 
Although green fl uorescent protein (GFP) labeled-MSCs were 
found in CNS demyelinating areas after intravenous infusion, 
no signifi cant sign of MSC oligodendroglial transdiff erentiation 
was observed (Gerdoni et al., 2007; Gordon et al., 2010). In 
summary, it is unlikely that neural transdiff erentiation might 
be part of the transplanted MSC-derived repair mechanism 
in MS. Alternative mechanisms by which MSCs might 
enhance functional recovery in MS are mediated through 
bystander eff ects on the host immune system and CNS cells 
(Zhang et al., 2005). These activities involve CNS-homing, 
immunemodulation, neuroprotection and remyelination 
(Karussis et al., 2008).

5.2 Transplanted MSCs home into demyelinated CNS and exert 
immunemodulatory activity during MS

Interestingly, after systemic or intraperitoneal administration 
of GFP labeled MSCs, transplanted cells home and infi ltrate 
into CNS demyelinated regions as well as into lymph nodes of 
EAE mice and promote functional recovery (Table I) (Gerdoni 
et al., 2007; Gordon et al., 2008; Gordon et al., 2010; Kassis 
et al., 2008; Zappia et al., 2005). These observations indicate 
that MSCs display CNS homing and immunemodulatory 
properties. The immunemodulatory eff ects of MSCs involve 
impairment of the maturation and function of dendritic 
cells (DCs) through the inhibition of molecules associated 
with antigen presentation and IL-12 release (Aggarwal and 
Pittenger, 2005). Additionally, MSCs inhibit the diff erentiation 
of monocytes into immature antigen-presenting myeloid DCs 
and modulate macrophage activity (Nemeth et al., 2009). The 
immunemodulatory eff ect of MSCs is not restricted to DCs 
and monocytes/macrophages, since they also infl uence B and 
T lymphocytes during MS. MSCs aff ect B cell proliferation 
and diff erentiation, promote T cell anergy and stimulate the 
production of regulatory T cells (Selmani et al., 2008; Uccelli 
et al., 2007; Uccelli et al., 2006). MSC-injected EAE mice 
display a reduction of CNS infl ammatory infi ltrates and a 
decrease in encephalitogenic T cell proliferation in lymph 
nodes with a subsequent reduction in demyelination (Kassis 
et al., 2008; Zappia et al., 2005). The MSC-derived inhibitory 
eff ect on encephalitogenic T cells has been also confi rmed 
in vitro (Kassis et al., 2008; Zappia et al., 2005). Moreover, 
transplanted MSCs regulate the T cell phenotype and modulate 
the immune response in the EAE animal model (Bai et al., 
2009; Liu et al., 2009; Rafei et al., 2009a; Rafei et al., 2009b). 
Intravenously injected MSCs inhibit Th1 and Th17 production 
with a concomitant increase in Th2 and anti-infl ammatory 
cytokines, promoting functional recovery in EAE mice (Bai 
et al., 2009). Further studies have shown that transplanted 
MSCs inhibit the production of CD4 Th17 cells in a CCL-2-

dependent manner (Rafei et al., 2009a; Rafei et al., 2009b). 
Interestingly, it seems that the immunemodulatory eff ect of 
MSCs during MS is mainly mediated through their secretome 
properties. In a recent study where conditioned medium 
derived from MSCs (MSC-CM) was infused into EAE mice, 
a signifi cant decrease in pro-infl ammatory cytokine (IFN-γ, 
IL-17, TNF-α, IL-2) expression together with a consequent 
increase in anti-infl ammatory cytokine (IL-10, IL-14) expression 
has been observed (Bai et al., 2012). In this study, authors 
showed that at least partially, hepatocyte growth factor 
(HGF) signaling mediates these MSC-CM-induced changes 
in cytokine expression in EAE (Bai et al., 2012). Moreover, 
inhibition of HGF signaling decreased MSC-derived functional 
recovery in EAE. In summary, transplanted MSCs exert 
immunemodulatory activities by diverse mechanisms that 
might be involved in the functional recovery in MS (Figure 1).

5.3 Transplanted MSCs induce neuroprotection and enhance CNS 
remyelination during MS

The MSC-derived immunemodulatory activity is probably 
not sufficient to explain the functional recovery observed 
in EAE mice after MSCs transplantation. In a recent report, 
MSCs were transplanted into experimental autoimmune 
neuritis (EAN) mice, a non-MS autoimmune neuropathy. 
Contrary to EAE, although MSCs inhibited CD4+ T cell 
proliferation, transplanted cells failed to promote functional 
recovery in EAN (Sajic et al., 2012). This result suggests that 
the MSC-derived immunemodulatory activity is not suffi  cient 
to promote functional recovery in all autoimmune-based 
neuropathies, and therefore MSCs may exert other activities 
that provide better success in demyelinated diseases such 
as MS. Besides the immunemodulatory effects of MSCs, 
transplanted MSCs protect axons and oligodendrocytes from 
cell death. For instance, it has been shown that transplanted 
MSCs reduce axonal loss in EAE mice (Zhang et al., 2006). 
Moreover, transplanted MSCs decrease the cellular expression 
of proNGF and p75, reducing oligodendrocyte apoptosis 
and enhancing functional recovery in EAE model (Zhang et 
al., 2009). In addition to this, the neuroprotective eff ect of 
transplanted MSCs is endowed with a strong antioxidant eff ect 
in EAE (Lanza et al., 2009). In summary, transplanted MSCs 
enhance neuronal and oligodendroglial survival (Figure 1).

In addition to immunemodulatory and neuroprotective 
activities, MSCs display neuroreparative properties by 
aff ecting the fate of CNS endogenous progenitor cells. For 
example, it has been shown that transplanted MSCs enhanced 
endogenous oligodendrocyte diff erentiation and remyelination 
in EAE mice (Bai et al., 2009; Kassis et al., 2008; Lu et al., 2009). 
However, with this experimental setup (EAE model) is still 
not clear whether the MSC-derived regenerative eff ect is an 
indirect consequence of the MSC-mediated immunemodulation 
or whether MSCs could directly exert a bystander activity on 
endogenous progenitors. A recent study partially addressed 
this question by co-transplanting MSCs together with OPCs 
into the myelin defi cient shiverer mouse strain (Cristofanilli 
et al., 2011). This study showed that MSCs enhanced OPC 
migration and maturation into oligodendrocytes promoting 
myelination in the corpus callosum. Consistent with this 
study, we have shown that ex vivo co-transplantation of 
MSCs together with NPCs onto hippocampal slice cultures 
(free of immune derived cells) induces NPCs to acquire an 
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oligodendrocytic phenotype, while NPCs transplanted alone 
generated mostly astrocytes (Rivera et al., 2009). Regarding 
the underlying mechanisms, we have studied the eff ects of 
MSCs on NPCs in vitro and demonstrated that soluble factors 
present in MSC-CM strongly activate oligodendrogenesis in 
postmitotic NPCs (Rivera et al., 2006b). First, we observed a 
strong increase in the number of GalC- and MBP-expressing 
cells in the MSC-CM treated cultures, indicating that MSC-CM 
promotes oligodendroglial differentiation and maturation. 
This was apparently at the expense of astrogenesis, since the 
number of GFAP-expressing cells was dramatically reduced. 
Moreover, we observed that MSC-CM augmented the 
expression of the pro-oligodendrogenic determinants Olig1/2, 
while it diminished the expression of Id2, a specifi c inhibitor of 
oligodendrogenesis. Therefore we suggested that MSC-CM not 
only promoted oligodendrocyte diff erentiation and maturation, 
but also induced oligodendrocyte fate decision, most likely 
through modulating the relative expression levels of Oligs/
Ids (Rivera et al., 2006b). In agreement with this conclusion, 
we have recently published that MSC-CM primed or 
predisposed proliferating NPCs towards the oligodendrocyte 
lineage (Steff enhagen et al., 2011). Therefore, soluble factors 
derived from MSCs can activate NPC oligodendrogenesis at 
diff erent progression stages. In the light of our fi ndings, a 
recent report has shown in EAE mice that the MSCs derived 
oligodendrogenic and myelin repair activity or activities reside 
in soluble factors secreted by these cells (Bai et al., 2012). Thus, 
MSC-CM infusion into EAE mice enhanced oligodendrocyte 
development and remyelination. Hence the identifi cation of 
the oligodendrogenic activity derived from MSCs becomes 
a priority to develop new remyelination therapies for MS 
treatment.

We performed a candidate approach in order to identify 
the MSC-derived oligodendrogenic activity. We have excluded 
a number of growth factors, cytokines and hormones as 
candidates for this activity: Insulin-like growth factor-1 (IGF-
1), thyroid hormone (TH), fi broblast growth factor-2 (FGF-2), 
vascular endothelial growth factor (VEGF), interleukin-6 
(IL-6), brain-derived neurotrophic factor (BDNF), nerve 
growth factor (NGF), transforming growth factor beta-1 
(TGFbeta-1), neurotrophin-3 (NT-3), sonic hegdehog (Shh), 
PDGF-AA, UDP-glucose and noggin (Rivera et al., 2006b; 
Rivera et al., 2008). Even though ciliary neurotrophic factor 
(CNTF) is expressed by MSCs and promotes oligodendrocyte 
diff erentiation of adult NPCs, it did not decrease astroglial 
diff erentiation (Rivera et al., 2008). Therefore it seems that, in 
contrast to MSC-CM, CNTF does not induce a change in the 
fate of NPCs from astrocytes towards oligodendrocytes. In 
experiments using neutralizing antibodies we demonstrated 
that CNTF, although expressed by MSCs, is not involved in 
the pro-oligodendrogenic eff ect triggered by MSCs (Rivera 
et al., 2008). A recent study concluded that HGF mediates 
MSC-induced recovery in MS (Bai et al., 2012). In addition, 
these authors showed that HGF accelerated remyelination 
of lysolecithin-induced demyelinated spinal cord. Although 
HGF seems to represent an attractive candidate for the MSC-
CM derived oligodendrogenic activity, it does not induce 
oligodendrogenesis in NPCs and no decrease in the proportion 
of oligodendrocytes generated has been observed after 
blocking HGF in MSC-CM (unpublished observations). The 
nature of the MSC-CM-derived oligodendrogenic activity 
remains unclear at present, but molecules other than proteins 

might be considered. For example, recent studies demonstrated 
that MSCs secrete vesicles that contain miRNAs, which 
could exert eff ects on neighboring cells (Chen et al., 2010). 
In summary, MSCs might activate oligodendrogenesis and 
contribute to remyelination in MS, but this hypothesis requires 
further investigation (Figure 1).

6. CONCLUSION AND FINAL REMARKS

The CNS remyelination capacity is impaired during chronic 
MS, since neural progenitors are insuffi  ciently recruited into 
the lesion site and fail to diff erentiate. Current MS treatments 
reduce the formation of infl ammatory lesions within the CNS 
but do not enhance endogenous myelin repair. Therefore, 
in addition to immunemodulation, boosting endogenous 
oligodendrogenesis and remyelination through cell therapies 
is a highly attractive alternative, since it may cover several 
target mechanisms in one shot. Here, MSCs represent an 
attractive source to develop a cell therapy for MS. First, MSCs 
are accessible cells, easy to obtain and thus invasive techniques 
can be avoided. Second MSCs can be used in an autologous 
transplantation mode. Third, MSCs home into the demyelinated 
CNS and therefore systemic transplantation rather than 
invasive cell administration techniques could be used. 
Finally, MSCs exert stromal bystander immunemodulatory, 
neuroprotective and eventually remyelinating activities in the 
damaged CNS. Therefore, autologous MSC transplantation 
might be considered for developing novel therapeutic 
approaches for MS treatment (Figure 1).
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